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Further second-order vibronic reduction factors for 
strongly coupled T @ tz systems 
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Physics Department. The University, Nottingham NG7 2RD, UK 

Received 20 February 1992 

Abstract. Secondader vibmnic reduction factors are derived for strongly coupled orbital 
triplet systemscoupled to t2 modesofvibration usingthe recently derived symmetry-related 
method. This involves the calculation of oscillator overlaps which are projected out of cubic 
vibronic states. Details are presented for examples where the perturbations are both of E- 
type symmetry, where they are both of T,type symmetry and where they are of mixed E- 
andT,typesymmetries. Thesymmetrypropertiesofthe resultsarediscussedandcompared 
with those obtained previously for perturbations of T, symmetry, such as those for spin- 
orbit coupling. The new calculations me appropriate when a description of second-order 
uniaxial stresses for strongly coupled systems is requiredsuch as in the study of deep-level 
impurities in semiconductors. 

1. Introduction 

For many impurity ion systems, particularly those in semiconductors, the electrons are 
strongly coupled to the vibrationsof their surrounding s. The concept of reduction factors 
is then introduced within such a vibronic system to enable us to describe an electronic 
perturbation V in terms of a purely electronic Hamiltonian after reduction factors (RFS) 
are inserted within it. First-order RFS are used when Voccurs once and second-order FWS 
are used when Voccurs twice (Ham 1965). It is well known that the second-order terms 
can become particularly important in many cases of strong coupling, especially in the 
case of orbital triplets (described by the isomorphic orbital angular momentum operator 
1 = 1) as their effects can dominate those of the first-order terms particularly when the 
latter go to zero (Ham 1965). The general principles are discussed in the books by 
Perlin and Wagner (1984) and Bersuker and Polinger (19891, which also give numerous 
references to other work. 

Poligeretul(l991) and Batesetal(l99la) have recently describedageneral method 
for the derivation of such second-order vibronic or Jahn-Teller (IT) RFS. The analysis 
was based entirely on symmetry grounds. It was shown that the reduction factors could 
be deduced from the evaluation of the sums of various oscillator overlaps and explicit 
expressions were derived. Applications of the method, using spin-orbit coupling h l .  S 
as an example, have been given for T C3 t2 IT systems by Polinger et aZ(l991) and Dunn 
eta[ (1990). The results were shown to be in agreement with the numerical work of 
OBrien (1990) for the same system. The agreement of the two was improved by the 
incorporation of anisotropy-type corrections in the analytical work (Bates et a1 1991a). 
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The T 8 t, JT system is known to apply to several magnetic impurity ion centres in 
semiconductors where the site symmetry is Thparticularly for orbital states of TI 
symmetry. In this paper we extend the method to the case where the two Vs appearing 
in the perturbation expression are: firstly, both of E symmetry; secondly, both of Tz 
symmetry; and, thirdly, one of E symmetry and the other of T, symmetry. Some 
preliminary results of this work were given in Bates ef al(1991b). The discussion here 
will be limited again to T 8  tz  systems but equivalent results have also been derived 
for spin-orbitcouplingfororthorhombicT8 (e + tz)JTsystems(Hallameta[1992a, b). 

Examples of perturbations that have E and TZ symmetry arise in the case of uniaxial 
stress. Thus a second aim of this paper is to derive effective Hamiltonians that describe 
second-order JT terms for uniaxial streses applied along the directions [Ool], [lll] and 
[llO]foranionataTdsite. 

The paper begins with a summary of the mathematical background of the method 
given originally in Polinger et al(l991). Section 3 contains the details of the calculation 
for the perturbations E 8 E, T2 8 Tz and E 8 T, for an orbital T, triplet at a Td site and 
gives the results of the calculation for the RFs for all three cases. Expressions for the RFS 
in the strong-coupling limit are derived in section 4 while the effective Hamiltonian for 
describing the uniaxial stress for the particular directions of [Ool], [lll] and [110] is 
derived in section 5. A brief discussion of the results obtained and applications for 
impurities in 111-V semiconductors is given in section 6. 

2. Mathematical background for orbital triplets 

We consider an isolated orbital triplet that is strongly coupled to the vibrations of its 
surroundings. The electronic orbital states may be written in the form Y&) = ITy); 
the eigenstates of the system are vibronic states which are written in the form 

of the state while N labels the repeated IR of the vibronic state such that the energies 
E$W increase with increasing N .  The vibronic eigenstates are each written as a sum of 
products of electronic and vibrational states by using a Clebsch-Gordan convolution 
form: 

ty~") r y  = - INTy) .  Thelabelsrygive the irreduciblerepresentation (IR) and thecomponent 

'where (XuMII'y) are the Clebsch-Gordan coefficients and IN(r)M} = ,yZ'(Q) are 
functions of the nuclear coordinates Q and thus represent the phonon states. 

Aperturbation Vcancauseasplittingofthegroundvibronicstate lory) in first order. 
In second order, the additional splitting can be described by the effective Hamiltonian: 

(0) (W where %p $i dependson the nuclear and space coordinates. Er and E ,  are the energies 
of the ground state ]Or) and excited states Im). (In the following, the brackets sur- 
rounding 0 and N in the superscripts attached to the energies will be dropped.) The 
general expression for the second-order reduction factors is given by 

Lr r r J  
where rk and r, are the symmetries of the two Vs (and thus (r, 8 r,) denotes the 
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symmetry of the perturbation), [r] is the dimensionality of the representation, j ( A )  is 
the fictitious angular momentum operator having values 0, 1, 2,3 or 4 depending on 
whether the representation r is of Al,  A,, E, TI or T2 symmetry and the [ ] are the 6r 
symbols (or Wigner coefficients). RA is given by the expression 

with the overlaps defined by 

where {O(Q)@lIN(A)@} are the reduced matrix elements giving the oscillator overlaps. 
Thus the reduction factor K f , )  (r, 63 r,) can be calculated from a weighted sum of the 
products of various oscillator overlaps. 

A form for the second-order effective Hamiltonian that is more explicit than (2.2) is 
(Bates et a[ 1991b) 

where Lf,;  and Q$L are the second-order orbit and other operators respectively, which 
transform as Mp, and the V$) are constants. (QSL could describe the quadratic dis- 
placements caused by uniaxial stresses, for example.) 

3. Calculation of the second-order reduction factors for a TI orbital state 

For simplicity, we consider in detail an orbital triplet ofTl symmetry, so that r = TI in 
the above expressions. (Results for a TZ orbital triplet have an equivalent form with 
appropriate changes in symmetry labels.) 

3.1. Both perturbations of E symmetry 

In this case, we have rk = r, = E. Substituting into (2.5),  we obtain the following 
expressions for the overlap integrals: 
SN(EA,Tl) = 0 
SN(EAzTl) = 0 

SN(EET~) = 0 
(3.1) 

SN(ET~TI) = HO(Ti)Ai Ih"Ti)A11+ W(Ti)EIIN(Ti)E) 
- HO(Ti)Ti IIN(Ti)TiI - W(Ti)TzIIN(T,)Td 

SN(ET,TI) = (1/2fl){OV1)Tl I IWdTiI  + ( b ' 2 ~ N W i ) T z  11 WTdTd. 
These then give 
R , , = R , , = R , = O  

R T ~  = E (GI - E~l)-l[~O(Ti)AIIIN(Tl)Ai} + B{O(Ti)EIIN(Ti)El 
N (3.2) 

- Q{O(Ti)T, IINTi)Ti} - MO(Ti)TzIIW'i)Tz}IZ 
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R T ~  = c N 

Thus the second-order reduction factors are given by the following expressions: 

1 1 2 

- @'J-'[~IO(T,)Tt IIN(Tz)TJ +~{0(Tr)Tzi lN(Tz)Tz}]  . 

K(,Z!(E C3 E) = 9(RT, + RT2)  KfI(E 8 E) = 0 

K ( , Z ~ ( E  BE) = o K!~(E 8 E) = 0. (3.3) 

Kf'(E BE) = ~ ( R T ,  - R T ~ )  

Only two of these reduction factors are non-zero and of these K&{(E 8 E) is of little 
importance as it multiplies a constant term. In order to evaluate the overlaps contained 
in these expressions, it is necessary to have expressions for the ground and all the excited 
states in symmetry-adapted form, so that the appropriate phonon parts can be projected 
out. At this stage in the calculation it is necessary to emphasize that we are considering 
in detail the example of a T, ion at a Td site and that we consider the T @ t Z  JT system 
only. For this system, some simplification occurs as /O(Tl)E} = 10(T,)Tl} = 0; so, from 
the above, we need expressions for 1 N(T,)A,}, I N(TI)T2} and I N(TZ)TZ} only. This can 
be achieved from the states derived by us previously in a series of papers that describe 
the transformation energy minimization procedure (Bates et ai 1987, Dunn 1988, Bates 
and Dunn 1989, Dunn and Bates 1989a, b, Dunn 1989). Some details of the procedures 
are given in the Appendix. After some algebra, weobtain 

RT, = 4k1 + g2 + 4g3 + g4 + 4g5) RT2 = k6 (3.4) 

where 

gt = 2mt( r00)  gz = ~ r , ( o m m )  g3 = C m,(omo) 
T r x 

I=  I m = l  m = 1  

with 

X =  -VStN% Y = 9 (KT/ f iwT) '  
(3.6) r,(imn) = N?(lmn)Yftm+"/[l!m!n!(Ej - E ~ , ) ] ,  

In the above, I, m, n are integers, the Ns are various normalizing factors for the vibronic 
states, S, is the overlap of the oscillator ground states localized in different wells and KT 
is the coupling constant. (See Dunn (1988) for details of these definitions.) The results 
of the calculations for the two non-zero reduction factors are plotted as a function of KT 
infigure 1 in unitsofhwT. Bothreductionfactorsare negative with KE' > K f :  ,and have 
their minimumvalues when KT/hwT = 0.75. It ispossible, therefore, that for KTgreater 
than unity, the second-order terms dominate those of the equivalent first-order RF 
(namely K'(E)) dependingon the size of hw+. 
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Figure 1. Second-order reduction factors (in units of 
fiwT) for the T@ t2 1'1 system plotted as a function of 

S -0.4 Kr/hwrforpenurbationsoftheform E@E. 

3.2. Both perturbations of T, symmetry 

In this case, the perturbations are of T, €3 T, symmetry, so rk = r, = T,. As before, the 
RA may be obtained directly by squaring the expressions for the overlap integrals and 
inserting the appropriate energy denominator. Here, the overlap integrals are 

SN(TZAITl) 

(3.7) 

As in the case of E €3 E perturbations, we need expressions for only some of the excited 
phonon states to evaluate these reduction factors. In  detail, we require expressions for 
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(N(AZ)T2} and I N(E)T2} in addition to the three we needed for the E &3 E case. Details 
of the method are described in the Appendix. This gives 

RT] tks + ~ 7 )  
(3.9) 

R A ~  = b k 3  + 4g6 f %IO) 

R E  = 6kz + g4 + 4g9) RT2 = 68s 

where the gs here are given by 
D/ ce I 

gz = 2 xrlo(Omm) g3 = 2 x r l g ( m m o )  g4 = X xrjO(ioo) 

g, = X xr,(ioo) g6 = X xrlg(oon) g, = E E xr4( lmo)  

g, = C C xr7( lmo)  g, = C C xrlZ(imo) glo = C C x r l 7 ( { m o ) .  

m-1 m = I  I -  1 
IJ 0: I L  

I =  I "= 1 1 = 0 m = l  

= I  = 1 - 1  x 1-1 

I=OIn=l  I = 2 m = l  1 = 2 m = 1  

(3.10) 

Two of the gs here (namely g, and gs) are the same as two of the gs obtained in 
the previous sub-section (namely g4 and g6 respectively), but otherwise the result is 
completely different. 

There are four non-zero RFS in this case. It is easily seen that they are similarly 
unrelated to those for the case of the two E-type perturbations. This is emphasized in 
the plots given in figure 2, which show that two of the RFS are positive and two are 
negative. They peak for KT/hoT between 0.6 and 0.7. 

3.3. One perturbation of E symmetry and one of Tzsymmetry 

(3.11) 

(3.12) 
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F i r e  2. As figure 1, but for perturbations of the 
form T2 @ T2. 

Figure 3. As figure 1, but for perturbations of the 
form E @ T2. 
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K,lfiw, 
0 1 2 3 

, ~ ~ ~~~ . ~ ~ ~~~ -0.6 I I 
Figure4. As figure 1. but for the spin-orbit coupling perturbationsofthe form T, @T,, 

RT> (E!, - E ~ ~ ) ~ ' I ( ~ / ~ ~ ~ ) { ~ C T I ) T Z I I ~ ( T ~ ) T ~ } ~ I .  

All the required phonon states have been obtained. After much algebra we obtain 

N 

RT, = 6 k i  + gz + 2g31 RT? = (1/3fl)ga (3.16) 

where 
I 

g2 = I: I: xr,(lmo) 
I = O m = I  

g,  = I: xrl(ioo) 
(3.17) I=  1 

* O I I  

g3 = I: xr , (omo)  g, = I: C xr , ( imo) .  
m=1 I = O * = i  

It is interesting to note that g,, g2, g3 and g, are exactly the same as g,, g,, g, and ga 
respectively for the E 8 E problem (equations (3.5)) and the same as g,, g,,-and gB 
respectively for the TZ @T2 problem (equations (3.10)). The results are shown in figure 
3. It is seen that both the non-zero reduction factors are negative such that K:, is 
everywhere larger in magnitude than K : ,  with their minimum values once again for 
KT//RwT = 0.7. 

3.4. Comparison with the results obtained for the perturbation T, @ T, 
For comparison purposes, figure 4 shows the equivalent results for a perturbation of the 
type TI @TI appropriate to spin-orbit coupling for the T 8 t2 IT system (Bates el al 
1991b) plotted in the same way as the results shown here in figures 1-3. They all have 
similar forms but the most interesting comparison is that between the perturbation 
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T,€3T2 and T1@Tl conveyed by the expressions for the reduction factors. From 
Polinger et al(1991), we have 

(21 KA,(TI @)TI) = -3(-RA, - 2RE - 3RT, - 3RT,) 

Kf'(T1 @TI)  = -3(2RA,  RE - 3RT, - 3RT,) 
(3.18) 

(21 T ~ ( T ~  @Ti)  = -3(-2RA,  R RE - ~ R T ,  + 3RT,) 

KF:(Tl @TI)  = - 3 ( 2 R ~ ,   R RE - ~ R T ,  + ~RT,) .  

On comparing (3.18) with (3.8) we see that R A l  has become RA, and that 
(') T €3T2) then becomes KFi(TI @Tl); conversely, Kf:(TI €3Tl) becomes E$?&: €3 T2). The differences between the calculated results come entirely from the 

values for the gs. 
Thenumber ofreductionfactorsobtained with a given perturbation follow that given 

in Polinger et a1 (1991). That is, for E €3 E we have the labels Al and E on the Ks ,  for 
T2 @ T2 we have the labels A E, T1 and T2 while for TZ €3 E we have the labels TI and 
T2 only. However, it should be noted that not all the factors are always present; thus in 
the last of the above three cases, there is no E label present. 

To obtain more accurate analytical expressions for the reduction factors, anisotropy 
corrections should be introduced. Bates et a1 (1991a) have included these corrections in 
an approximate way for second-order spin-orbit coupling. In principle, such corrections 
could also be introduced here but, because of the lack of experimental data and/or 
numerical results with which our results could be compared, such improvements in the 
model are not justified at the present time. Instead, we investigate .the form of the 

.reduction factors in the strong-coupling limit by analytical means. 

4. The strong-coupling h i t  

In JT systems, it is often informative to consider the way in which the various reduction 
factors approach their limiting values in the strong-coupling limit. To do this, we make 
use of the following approximations. We use the well k n o w  relation (Ham 1965) 

and define 
r 

1 Zm 

ha m = l  m!m 
H ( 2 ,  w) = - - 

which approximates to (Polinger 1992) 
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The normalizing factors each become equal to 1/4a, (Dum 1989) and the energies are 
given by 

E,(I,  m, n) - ETr = fiw(1 + m + n). 
Also, it is easy to see that: 

Nh = t H ( Y ,  w )  e-2y = 0 (m!)-'--*O 

and that 

e-"H(2Y, w )  = ( l / f r w ) ( l / 2 Y )  e-2y(e2y - 1 - L) = ( l / h w ) ( l / 2 Y )  = @cl 

where the IT energy is given by Em = $K:/ fro , .  For the case of two E-type pertur- 
bations, we find 

g, = 2 g 3 + f X H ( Y , ~ )  8 4  = g6 --* H ( H ( Y ,  w )  f H(2Y, U)) 
(4.1) 

g2-0 g, + Q X ( W ( Y ,  w )  + H(2Y, 0)).  

Thus the two non-zero reduction factors become 

KAl  = 9(RT,  + RTz)  = -9(HH(2Y,  w )  + h H ( 2 Y ,  w ) )  e-" = -9 H(ZY, w )  e-*'' 

K;' = ~ ( R T ,  - R T ~ )  = -9(#H(2Y,  w )  - &H(2Y, w ) )  e-2y = -BH(2Y, w )  e-zy 

which give 

K z i  = -8(8H(2Y, w )  e-2y) = +E+,' 

(21 

(4.2) 

K"' E = -2($H(2Y,  o) e-*y) = -&ET:. 

(4.3) 
The calculations for the limiting values of the second-order reduction factors for the two 
other cases proceed in a similar way. The final results are, for two T2 perturbations, 

(4.4) K , ,  (21 = -3(%e-ZY H(2Y,  w ) )  = -E%' K ( 2 )  - - K , , = K $ = O  (2) 

KT2  (2) - - -4( $H(2Y,  w )  e-*') = -$E%'. 

and, for the case when one perturbation is of T, symmetry and the other of E symmetry, 
the final result is 

(4.5) K c )  - 
T, -0 

The above results should be used in conjunction with figures 1-3. They give us more 
information on the relative importance of the various reduction factors in the case of 
very strong coupling. 

5. Application to uniaxial stresses 

In uniaxial stress experiments, all ions in the crystal being stressed are displaced from 
their equilibrium positions. This applies equally to the neighbours of a magnetic ion, so 
the electrons associated with the ion see an altered electric potential. This causes a 
perturbation on the zero-stress electronic eigenstates of the ion. We represent the static 
displacement in the cluster by giving the Q, the value Q,. Theeffective Hamiltonian that 
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Table 1. Second-order symmetry-adapted orbital operators L$ in second-quantized form 
such that c: 10) = I x )  etc. where IO) is the orbital vacuum slate. 

Table 2. Second-order symmetry-adapted displacements Qf?, in terms of the cluster 
displacements 0,. 

Q W  
A ,  

0 
0 

describes this perturbation generated by the uniaxial stress in first order is well known 
and may be written in the general form 

(5.2) 

(2) In the above, V(’) and V M  are the first- and second-order coupling constants respect- 
ively, Kc) and K M  are the first- and second-order RFS and L!#, are orbital operators 
having the symmetry indicated. The orbital operators are given explicitly in table 1 in 
second-quantized form. The first-order cluster displacements are the oi defined above 
while the symmetry-adapted second-order displacements are given in table 2. The 
magnitudes of the Qi determine the size and direction of the applied uniaxial stress felt 
by the magnetic ion in the crystal. 

More explicitly, the first-order effective Hamiltonian may be written in the form 

M(2)  

x 2 e s s  = VAfiQlI( l  + 1) + vE(QOE0 + OeEt) 

-b V T ( Q J Y Z  + GST, + Q6TXY) (5.3) 
while the second-order effective Hamiltonian is 
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where in equation (5.3) we have used the simplification that LgL = E o  etc and that 
vM = V $ ) K $ ) .  

Further simplification occurs for the threemain stress directions namely [OOl], [ill] 
and [llO] as many of the Q, are zero. Thus we rewrite (5.3) in the form 

- - -  %!k =P'VEQEEB q ' V d T T x y  + r ' v d ? d T y z  t TZX) (5.5) 
where the label B on Q is replaced by the label E while the labels 4,5.60n the Q are all 
replaced by T. Thus we have: for a [Ool] stress, p' = 1, q' = r' = 0;  for a [lll] stress, 
p' = 0, q' = r' = 1; and for a [ l l O ]  stress, p' = 6, q' = I, r' = 0.  

The equivalent second-order expression is more complicated as rk and r, are of E, 
T2 or mixed symmetries. For the same three stress directions, equation (5.4) simplifies 
to 

%$$'e, =s"Ktl(I 'k  € 3 r f , ) V f : I ( l +  1)Qp; + p " K g ) ( T k  @ l ? f l ) V ~ ' € e Q ~ ~  

+ q " K t j ( T k  € 3 r / ) V f i T x y Q F k  

(5.6) + r"KF!(rk € 3 r / ) V ~ ~ ( T y 2 Q $ ~ c  + T,QT,)  (2) 

where for stress along [OOI], we haves" = 4, p" = 4, q" = r" = 0; 
(2) v ( 2 )  (2) - (2) ( i ) r r = T , = E ;  V A ,  = E = Vi;andQA, - Q E  =Q: ;  

(ii) for stress along [111], we ,h~," SI' = f, p" = -f, 9" = r" = 4 3 ;  rx = r, = T ~ ;  
V") A i  = v T 2  (') - - V z  T I  ' and QF: = Qn, = Q: (for a = 5,  c, q ) ;  and 

(iii) €or stress along [110], we have s" = p" = rR = 0, q" = -2; r, = E, rl = T2; Vt: = V E V T ;  and QYL = QEQY 

The final step is to write the displacements QE and QT2 in terms of the pressure P 
and the relevant compliance tensors Sii. Equations (5.5) and (5.6) can then be used to 
model experimental data, such as those showing the effects of stress on the zero-phonon 
line arising from, for example, deep-level impurities in 111-V semiconductors. 

Work is currently in progress to model the effects of uniaxial stress on the optical 
absorption zero-phonon line observed in the GaP:Ti3+ system where departures from 
a linear stress relation are apparent (AI-Shaikh eta1 1992). It is thought that part of this 
non-linearity is due to the omission of second-order JT terms, particularly in the high- 
stress regions as this system is known to be strongly coupled, although the nature of the 
type of JT coupling is not yet clear. The importance of second-order JT terms has been 
clearly demonstrated, but with the spin-orbit coupling terms, in the excited 3T1 state of 
the V3+ ion in 111-V materials (Bates ef a1 1990) to account for itsfine structure. Thus 
we suppose that the details presented above will help in the detailed understanding of 
the effects of uniaxial stress, which is used increasingly as an additional technique in 
optical and other experiments. 

6. Conclusions and discussion 

The main aim of this paper has been to derive expressions for the remaining second- 
order reduction factors for strongly coupled T @ t2 JT system which do not appear to 
have been calculated before for this or any other system, except the simple case of T €3 e 
(Ham 1965). The details of the calculations are appropriate to a T,  ion as they are much 
more likely to involve stronger coupling of t2  modes than to e modes. As in the case of 
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our previous work for the second-order factors associated with spin-orbit coupling, the 
results are expressed as sums of various oscillator overlaps. They display very clearly 
the symmetry properties of the system. Thus results for other systems could be obtained 
directly by appropriate changes of the relevant symmetry labels. In general, second- 
order terms can be particularly important if they produce terms in the effective Ham- 
iltonian different from those appearing in first order. On the other hand, so-called third- 
order (and even higher-order) terms will not introduce any new terms in the effective 
Hamiltonian and thus, at best, they could slightly alter the size of the coefficient in a 
minority of cases. 

The results derived here could be particularly important for the spectroscopic study 
of deeplevel impurities in semiconductors under uniaxial stress. For strongly coupled 
systems, departures from a linear dependence on stress could be important in a more 
complete understanding of the system. 
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Appendix 

In order to use thismethod, it isnecessary to have expressionsfor theground andexcited 
vibronic states in symmetry-adapted form. Such sets of states have been obtained from 
aunitary transformation method followed by an energy minimization procedure (Bates 
et a1 1987, Dunn 1988,1989, Dunn and Bates 1989a, b). Thus the z-component of the 
ground T, vibronic triplet is written in the form 

IT, , t )=N,( - la ' ;O)+Ib' ;O)+lc ' ;O)-  1d';O)) (-41) 

IA2t) = NAI( la'; 0) + 16'; 0) + IC' ;  0) + Id'; 0)). (A2) 

while the inversion level of A, symmetry at a relative energy of 6 is written in the form 

In the above, la'; 0) = Vola; 0) etc, where a labels the trigonal well and simultaneously 
gives the associated orbital state such that: 

a = G ( x  + y  -2) 

c = G ( - x  +y +z) 

b = q x  - y  +z)  

d = v q - x  -y -z). 
(A31 

Also, 0 denotes that there are no excitations in any of the t2  oscillators with respect to 
the transformed picture and U, is the value of the unitary transformation U (given in 
Bates eta1 1987) evaluated at the a-minimum etc. U ,  is used to transform the states back 
to the original basis (Polinger et ul1991, Bates ef ul1991a). The other members of the 
ground triplet IT&, IT,$) are obtained by cyclic permutations of the labelsx,y, z and 
also of U ,  6 ,  c. The Ns are normalizing factors. 
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The excited vibronic states are much more complicated. A convenient form is (Dum 
1989) 

where the I, m, n give the number of t2 oscillator excitations of symmetry yz, zx. xy 
respectively and Ni are normalizing factors. The label i runs from 1 to 19; expressions 
for the qiare given in table 2 of Dunn (1989). 

In order to extract the required oscillator parts of the vibronic states, it is necessary 
to use the expansion formula given by (2.1) using Clebsch-Gordan coefficients (see, 
e.g., Griffith 1962, Sugano er al 1970, Koster et all963) appropriate to the Td group. 
Thus IT,,t), IA,t) and I M y )  must be expanded in terms of the orbital states I x ) ,  l y )  and 
I z) and the oscillator states obtained from a combination of the U,, U,, U, and Udacting 
on )O,O, 0) for the ground states and on 14'5"'6"} for the excited states. On comparing 
these expressions with those obtained from the expansion formula and equating the 
coefficients of the equivalent orbital states, the resulting simultaneous equations are 
easily solved and give the states required in section 3. 
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